"""I/O utilities for SSSOM."""
import logging
import os
import re
from collections import ChainMap
from itertools import chain
from pathlib import Path
from typing import Iterable, List, Optional, TextIO, Tuple, Union
import curies
import pandas as pd
import yaml
from curies import Converter
from deprecation import deprecated
from sssom.validators import validate
from .constants import (
CURIE_MAP,
PREFIX_MAP_MODE_MERGED,
PREFIX_MAP_MODE_METADATA_ONLY,
PREFIX_MAP_MODE_SSSOM_DEFAULT_ONLY,
MergeMode,
MetadataType,
SchemaValidationType,
get_default_metadata,
)
from .context import get_converter
from .parsers import get_parsing_function, parse_sssom_table, split_dataframe
from .util import MappingSetDataFrame, are_params_slots, augment_metadata, raise_for_bad_path
from .writers import get_writer_function, write_table, write_tables
[docs]
def convert_file(
input_path: str,
output: TextIO,
output_format: Optional[str] = None,
) -> None:
"""Convert a file from one format to another.
:param input_path: The path to the input SSSOM tsv file
:param output: The path to the output file. If none is given, will default to using stdout.
:param output_format: The format to which the SSSOM TSV should be converted.
"""
raise_for_bad_path(input_path)
doc = parse_sssom_table(input_path)
write_func, fileformat = get_writer_function(output_format=output_format, output=output)
# TODO cthoyt figure out how to use protocols for this
write_func(doc, output, serialisation=fileformat) # type:ignore
[docs]
def parse_file(
input_path: str,
output: TextIO,
*,
input_format: Optional[str] = None,
metadata_path: Optional[str] = None,
prefix_map_mode: Optional[MergeMode] = None,
clean_prefixes: bool = True,
strict_clean_prefixes: bool = True,
embedded_mode: bool = True,
mapping_predicate_filter: tuple = None,
) -> None:
"""Parse an SSSOM metadata file and write to a table.
:param input_path: The path to the input file in one of the legal formats, eg obographs, aligmentapi-xml
:param output: The path to the output file.
:param input_format: The string denoting the input format.
:param metadata_path: The path to a file containing the sssom metadata (including prefix_map)
to be used during parse.
:param prefix_map_mode: Defines whether the prefix map in the metadata should be extended or replaced with
the SSSOM default prefix map derived from the :mod:`bioregistry`.
:param clean_prefixes: If True (default), records with unknown prefixes are removed from the SSSOM file.
:param strict_clean_prefixes: If True (default), clean_prefixes() will be in strict mode.
:param embedded_mode:If True (default), the dataframe and metadata are exported in one file (tsv), else two separate files (tsv and yaml).
:param mapping_predicate_filter: Optional list of mapping predicates or filepath containing the same.
"""
raise_for_bad_path(input_path)
converter, meta = _get_converter_and_metadata(
metadata_path=metadata_path, prefix_map_mode=prefix_map_mode
)
parse_func = get_parsing_function(input_format, input_path)
mapping_predicates = None
# Get list of predicates of interest.
if mapping_predicate_filter:
mapping_predicates = extract_iris(mapping_predicate_filter, converter)
doc = parse_func(
input_path,
prefix_map=converter,
meta=meta,
mapping_predicates=mapping_predicates,
)
if clean_prefixes:
# We do this because we got a lot of prefixes from the default SSSOM prefixes!
doc.clean_prefix_map(strict=strict_clean_prefixes)
write_table(doc, output, embedded_mode)
[docs]
def validate_file(input_path: str, validation_types: List[SchemaValidationType]) -> None:
"""Validate the incoming SSSOM TSV according to the SSSOM specification.
:param input_path: The path to the input file in one of the legal formats, eg obographs, aligmentapi-xml
:param validation_types: A list of validation types to run.
"""
# Two things to check:
# 1. All prefixes in the DataFrame are define in prefix_map
# 2. All columns in the DataFrame abide by sssom-schema.
msdf = parse_sssom_table(file_path=input_path)
validate(msdf=msdf, validation_types=validation_types)
[docs]
def split_file(input_path: str, output_directory: Union[str, Path]) -> None:
"""Split an SSSOM TSV by prefixes and relations.
:param input_path: The path to the input file in one of the legal formats, eg obographs, aligmentapi-xml
:param output_directory: The directory to which the split file should be exported.
"""
raise_for_bad_path(input_path)
msdf = parse_sssom_table(input_path)
splitted = split_dataframe(msdf)
write_tables(splitted, output_directory)
def _get_converter_and_metadata(
metadata_path: Union[None, str, Path] = None, *, prefix_map_mode: Optional[MergeMode] = None
) -> Tuple[Converter, MetadataType]:
"""
Load SSSOM metadata from a YAML file, and then augment it with default prefixes.
:param metadata_path: The metadata file in YAML format
:param prefix_map_mode: one of metadata_only, sssom_default_only, merged
:return: A converter and remaining metadata from the YAML file
"""
if metadata_path is None:
return get_converter(), get_default_metadata()
with Path(metadata_path).resolve().open() as file:
metadata = yaml.safe_load(file)
metadata = dict(ChainMap(metadata, get_default_metadata()))
converter = Converter.from_prefix_map(metadata.pop(CURIE_MAP, {}))
converter = _merge_converter(converter, prefix_map_mode=prefix_map_mode)
return converter, metadata
def _merge_converter(
converter: Converter, prefix_map_mode: Optional[MergeMode] = None
) -> Converter:
"""Merge the metadata's converter with the default converter."""
if prefix_map_mode is None or prefix_map_mode == PREFIX_MAP_MODE_METADATA_ONLY:
return converter
if prefix_map_mode == PREFIX_MAP_MODE_SSSOM_DEFAULT_ONLY:
return get_converter()
if prefix_map_mode == PREFIX_MAP_MODE_MERGED:
return curies.chain([converter, get_converter()])
raise ValueError(f"Invalid prefix map mode: {prefix_map_mode}")
# def filter_file(input: str, prefix: tuple, predicate: tuple) -> MappingSetDataFrame:
# """Filter mapping file based on prefix and predicates provided.
# :param input: Input mapping file (tsv)
# :param prefix: Prefixes to be retained.
# :param predicate: Predicates to be retained.
# :return: Filtered MappingSetDataFrame.
# """
# msdf: MappingSetDataFrame = parse_sssom_table(input)
# prefix_map = msdf.prefix_map
# df: pd.DataFrame = msdf.df
# # Filter prefix_map
# filtered_prefix_map = {
# k: v for k, v in prefix_map.items() if k in prefix_map.keys() and k in prefix
# }
# filtered_predicates = {
# k: v
# for k, v in prefix_map.items()
# if len([x for x in predicate if str(x).startswith(k)])
# > 0 # use re.find instead.
# }
# filtered_prefix_map.update(filtered_predicates)
# filtered_prefix_map = add_built_in_prefixes_to_prefix_map(filtered_prefix_map)
# # Filter df based on predicates
# predicate_filtered_df: pd.DataFrame = df.loc[
# df[PREDICATE_ID].apply(lambda x: x in predicate)
# ]
# # Filter df based on prefix_map
# prefix_keys = tuple(filtered_prefix_map.keys())
# condition_subj = predicate_filtered_df[SUBJECT_ID].apply(
# lambda x: str(x).startswith(prefix_keys)
# )
# condition_obj = predicate_filtered_df[OBJECT_ID].apply(
# lambda x: str(x).startswith(prefix_keys)
# )
# filtered_df = predicate_filtered_df.loc[condition_subj & condition_obj]
# new_msdf: MappingSetDataFrame = MappingSetDataFrame(
# df=filtered_df, prefix_map=filtered_prefix_map, metadata=msdf.metadata
# )
# return new_msdf
[docs]
def run_sql_query(
query: str, inputs: List[str], output: Optional[TextIO] = None
) -> MappingSetDataFrame:
"""Run a SQL query over one or more SSSOM files.
Each of the N inputs is assigned a table name df1, df2, ..., dfN
Alternatively, the filenames can be used as table names - these are first stemmed
E.g. ~/dir/my.sssom.tsv becomes a table called 'my'
Example:
sssom dosql -Q "SELECT * FROM df1 WHERE confidence>0.5 ORDER BY confidence" my.sssom.tsv
Example:
`sssom dosql -Q "SELECT file1.*,file2.object_id AS ext_object_id, file2.object_label AS ext_object_label \
FROM file1 INNER JOIN file2 WHERE file1.object_id = file2.subject_id" FROM file1.sssom.tsv file2.sssom.tsv`
:param query: Query to be executed over a pandas DataFrame (msdf.df).
:param inputs: Input files that form the source tables for query.
:param output: Output.
:return: Filtered MappingSetDataFrame object.
"""
from pansql import sqldf
n = 1
while len(inputs) >= n:
fn = inputs[n - 1]
msdf = parse_sssom_table(fn)
df = msdf.df
# df = parse(fn)
globals()[f"df{n}"] = df
tn = re.sub("[.].*", "", Path(fn).stem).lower()
globals()[tn] = df
n += 1
new_df = sqldf(query)
msdf.clean_context()
new_msdf = MappingSetDataFrame.with_converter(
df=new_df, converter=msdf.converter, metadata=msdf.metadata
)
if output is not None:
write_table(new_msdf, output)
return new_msdf
[docs]
def filter_file(input: str, output: Optional[TextIO] = None, **kwargs) -> MappingSetDataFrame:
"""Filter a dataframe by dynamically generating queries based on user input.
e.g. sssom filter --subject_id x:% --subject_id y:% --object_id y:% --object_id z:% tests/data/basic.tsv
yields the query:
"SELECT * FROM df WHERE (subject_id LIKE 'x:%' OR subject_id LIKE 'y:%')
AND (object_id LIKE 'y:%' OR object_id LIKE 'z:%') " and displays the output.
:param input: DataFrame to be queried over.
:param output: Output location.
:param kwargs: Filter options provided by user which generate queries (e.g.: --subject_id x:%).
:raises ValueError: If parameter provided is invalid.
:return: Filtered MappingSetDataFrame object.
"""
params = {k: v for k, v in kwargs.items() if v}
query = "SELECT * FROM df WHERE ("
multiple_params = True if len(params) > 1 else False
# Check if all params are legit
input_df: pd.DataFrame = parse_sssom_table(input).df
if not input_df.empty and len(input_df.columns) > 0:
column_list = list(input_df.columns)
else:
raise ValueError(f"{input} is either not a SSSOM TSV file or an empty one.")
legit_params = all(p in column_list for p in params)
if not legit_params:
invalids = [p for p in params if p not in column_list]
raise ValueError(f"The params are invalid: {invalids}")
for idx, (k, v) in enumerate(params.items(), start=1):
query += k + " LIKE '" + v[0] + "' "
if len(v) > 1:
for idx2, exp in enumerate(v[1:]):
query += " OR "
query += k + " LIKE '" + exp + "'"
if idx2 + 1 == len(v) - 1:
query += ") "
else:
query += ") "
if multiple_params and idx != len(params):
query += " AND ("
return run_sql_query(query=query, inputs=[input], output=output)
[docs]
def annotate_file(
input: str, output: Optional[TextIO] = None, replace_multivalued: bool = False, **kwargs
) -> MappingSetDataFrame:
"""Annotate a file i.e. add custom metadata to the mapping set.
:param input: SSSOM tsv file to be queried over.
:param output: Output location.
:param replace_multivalued: Multivalued slots should be
replaced or not, defaults to False
:param kwargs: Options provided by user
which are added to the metadata (e.g.: --mapping_set_id http://example.org/abcd)
:return: Annotated MappingSetDataFrame object.
"""
params = {k: v for k, v in kwargs.items() if v}
are_params_slots(params)
input_msdf = parse_sssom_table(input)
msdf = augment_metadata(input_msdf, params, replace_multivalued)
if output is not None:
write_table(msdf, output)
return msdf